Wednesday, October 30, 2013

Novel technique for suturing tissue-engineered collagen graft improves tendon repair

Novel technique for suturing tissue-engineered collagen graft improves tendon repair


[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:

30-Oct-2013



[


| E-mail

]


Share Share

Contact: Vicki Cohn
vcohn@liebertpub.com
914-740-2100 x2156
Mary Ann Liebert, Inc./Genetic Engineering News






New Rochelle, NY, October 30, 2013The repair of ruptured tendons often requires the use of a graft to bridge gaps between the torn tendon and bone. A tissue-engineered collagen graft can reduce the complications associated with other types of tendon grafts, but it may not be able to support full load bearing until integrated into the surrounding tissue. A new suture technique designed to support this tissue-engineered tendon is described in BioResearch Open Access, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the BioResearch Open Access website.


The article "Development of a Surgically Optimized Graft Insertion Suture Technique to Accommodate a Tissue-Engineered Tendon In Vivo" presents an innovative interlocking suture technique that distributes suture tension away from the cut end of the injured tendon provides adequate mechanical strength to allow for weight bearing as healing progresses.


Coauthors Prasad Sawadkar et al., University College London and University of Manchester, UK, describe the suture technique and present the results of mechanical stress tests and image analysis of tendons repaired using either standard graft insertion methods or their novel suture technique. "We now have ex vivo proof of concept that this suture technique is suitable for testing in vivo, and this will be the next stage of our research," state the authors.


"Advances in tendon repair and bioengineering are essential for improved management and outcomes of tendon injuries," says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland. "This article shows exciting 'proof of concept' ex vivo data, which will be useful for improving current tendon repair techniques."


###

About the Journal

BioResearch Open Access is a bimonthly peer-reviewed open access journal led by Editor-in-Chief Robert Lanza, MD, Chief Scientific Officer, Advanced Cell Technology, Inc. and Editor Jane Taylor, PhD. The Journal provides a new rapid-publication forum for a broad range of scientific topics including molecular and cellular biology, tissue engineering and biomaterials, bioengineering, regenerative medicine, stem cells, gene therapy, systems biology, genetics, biochemistry, virology, microbiology, and neuroscience. All articles are published within 4 weeks of acceptance and are fully open access and posted on PubMedCentral. All journal content is available on the BioResearch Open Access website.


About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in promising areas of science and biomedical research, including, DNA and Cell Biology, Tissue Engineering, Stem Cells and Development, Human Gene Therapy, HGT Methods, and HGT Clinical Development, and AIDS Research and Human Retroviruses. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website (http://www.liebertpub.com).


Mary Ann Liebert, Inc.
140 Huguenot St., New Rochelle, NY 10801-5215 http://www.liebertpub.com
Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101




[ Back to EurekAlert! ]

[


| E-mail


Share Share

]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.




Novel technique for suturing tissue-engineered collagen graft improves tendon repair


[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:

30-Oct-2013



[


| E-mail

]


Share Share

Contact: Vicki Cohn
vcohn@liebertpub.com
914-740-2100 x2156
Mary Ann Liebert, Inc./Genetic Engineering News






New Rochelle, NY, October 30, 2013The repair of ruptured tendons often requires the use of a graft to bridge gaps between the torn tendon and bone. A tissue-engineered collagen graft can reduce the complications associated with other types of tendon grafts, but it may not be able to support full load bearing until integrated into the surrounding tissue. A new suture technique designed to support this tissue-engineered tendon is described in BioResearch Open Access, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the BioResearch Open Access website.


The article "Development of a Surgically Optimized Graft Insertion Suture Technique to Accommodate a Tissue-Engineered Tendon In Vivo" presents an innovative interlocking suture technique that distributes suture tension away from the cut end of the injured tendon provides adequate mechanical strength to allow for weight bearing as healing progresses.


Coauthors Prasad Sawadkar et al., University College London and University of Manchester, UK, describe the suture technique and present the results of mechanical stress tests and image analysis of tendons repaired using either standard graft insertion methods or their novel suture technique. "We now have ex vivo proof of concept that this suture technique is suitable for testing in vivo, and this will be the next stage of our research," state the authors.


"Advances in tendon repair and bioengineering are essential for improved management and outcomes of tendon injuries," says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland. "This article shows exciting 'proof of concept' ex vivo data, which will be useful for improving current tendon repair techniques."


###

About the Journal

BioResearch Open Access is a bimonthly peer-reviewed open access journal led by Editor-in-Chief Robert Lanza, MD, Chief Scientific Officer, Advanced Cell Technology, Inc. and Editor Jane Taylor, PhD. The Journal provides a new rapid-publication forum for a broad range of scientific topics including molecular and cellular biology, tissue engineering and biomaterials, bioengineering, regenerative medicine, stem cells, gene therapy, systems biology, genetics, biochemistry, virology, microbiology, and neuroscience. All articles are published within 4 weeks of acceptance and are fully open access and posted on PubMedCentral. All journal content is available on the BioResearch Open Access website.


About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in promising areas of science and biomedical research, including, DNA and Cell Biology, Tissue Engineering, Stem Cells and Development, Human Gene Therapy, HGT Methods, and HGT Clinical Development, and AIDS Research and Human Retroviruses. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website (http://www.liebertpub.com).


Mary Ann Liebert, Inc.
140 Huguenot St., New Rochelle, NY 10801-5215 http://www.liebertpub.com
Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101




[ Back to EurekAlert! ]

[


| E-mail


Share Share

]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.




Source: http://www.eurekalert.org/pub_releases/2013-10/mali-ntf103013.php
Related Topics: oarfish   Sean Sasser  

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.